Stability, Convergence and consistency:

After presented, how to approximate the derivatives that including in P.D.E. to generate the finite difference schemes for its numerical solution? Should be discussing the follow;

- Verity that these schemes are good approximation to the P.D.E. (consistent).
- Verify that the schemes are stable or no.
- Show that the numerical solution converges to the solution of P.D.E.

Let us to define

$$
\begin{equation*}
F_{h, k}(U)=b \tag{43}
\end{equation*}
$$

Is a finite scheme and,

$$
\begin{equation*}
F u=b \tag{45}
\end{equation*}
$$

is a partial differential equation. Now we need to light up some definition related to the property of finite difference schemes, as follows;
Definition: we say that a finite difference scheme (43) is consistent with P.D.E.(45) of order (k, h), if for any smooth function

$$
\begin{equation*}
F u-F_{k, h} U=O\left(k^{r}, h^{s}\right) \tag{46}
\end{equation*}
$$

To verify consistency expand u in Taylor series and make sure equation (46) holds.

Example: If $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+c u$ approximate by explicit finite difference method, then
(1) show that the finite difference equation given as
$u_{i}^{n+1}=\left(1+c r h^{2}+r^{2} \delta_{x}^{2}\right) u_{i}^{n}$, where $r=\frac{k}{h^{2}}$, in which $k=\Delta t$ and $h=\Delta x$
(2) Show that difference equation and P.D.E. are consistent with the truncation error

$$
T E=\frac{k}{2} \frac{\partial^{2} u}{\partial t^{2}}-\frac{h^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}}+\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots=O\left(k, h^{2}\right)
$$

Solution: using forward finite difference approximation (15) for the first order time derivative, and central finite difference approximation(18)for the second order spatial derivative, finite difference equation so obtained is

$$
\begin{equation*}
\frac{u_{i+1}^{n+1}-u_{i}^{n}}{\Delta t}=\frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{(\Delta x)^{2}}+c u_{i}^{n} \tag{43}
\end{equation*}
$$

Rearrangement this equation, we have

$$
\begin{equation*}
u_{i}^{n+1}=u_{i}^{n}+\frac{\Delta t}{(\Delta x)^{2}}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)+\Delta t c u_{i}^{n} \tag{44}
\end{equation*}
$$

If we put $r=\frac{\Delta t}{(\Delta x)^{2}}$ and using the definition of the central difference operator, then the finit difference equation becomes

$$
u_{i}^{n+1}=\left(1+c r(\Delta x)^{2}+r^{2} \delta_{x}^{2}\right) u_{i}^{n}
$$

Expand each term in equation(44), we obtain

$$
\begin{aligned}
& u_{i}^{n}+\frac{\Delta t}{1!} \frac{\partial u_{i}^{n}}{\partial t}+\frac{(\Delta t)^{2}}{2!} \frac{\partial^{2} u_{i}^{n}}{\partial t^{2}}+\frac{(\Delta t)^{3}}{3!} \frac{\partial^{3} u_{i}^{n}}{\partial t^{3}}+\cdots \cdots= \\
& u_{i}^{n}+ r\left(u_{i}^{n}+\frac{\Delta x}{1!} \frac{\partial u_{i}^{n}}{\partial x}+\frac{(\Delta x)^{2}}{2!} \frac{\partial^{2} u_{i}^{n}}{\partial x^{2}}+\frac{(\Delta x)^{3}}{3!} \frac{\partial^{3} u_{i}^{n}}{\partial x^{3}}+\cdots \cdots\right. \\
&\left.-2 u_{i}^{n}+u_{i}^{n}-\frac{\Delta x}{1!} \frac{\partial u_{i}^{n}}{\partial x}+\frac{(\Delta x)^{2}}{2!} \frac{\partial^{2} u_{i}^{n}}{\partial x^{2}}-\frac{(\Delta x)^{3}}{3!} \frac{\partial^{3} u_{i}^{n}}{\partial x^{3}}+\cdots \cdots\right)+c r(\Delta x)^{2} u_{i}^{n}
\end{aligned}
$$

Rearrangement this equation to obtain

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}-c u+\frac{(\Delta t)}{2} \frac{\partial^{2} u_{i}^{n}}{\partial t^{2}}-\frac{(\Delta x)^{2}}{12} \frac{\partial^{4} u_{i}^{n}}{\partial x^{4}}=0 \\
& \frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}-c u+T E=0, \text { where } T E=\frac{(\Delta t)}{2!} \frac{\partial^{2} u_{i}^{n}}{\partial t^{2}}-\frac{(\Delta x)^{2}}{12} \frac{\partial^{4} u_{i}^{n}}{\partial x^{4}}+\cdots \cdots \cdots
\end{aligned}
$$

This equation of order $O\left(k, h^{2}\right)$.
Exercise7: Approximation P.D.E. in above example by implicit finite difference method ,then find its order of error

Definition: For a function $v=\left(\ldots \ldots . . ., v_{-2}, v_{-1}, v_{0}, v_{1}, v_{2}, \ldots \ldots \ldots \ldots\right)$ on the grid with step size Δx :

$$
\text { norm } v=\|v\|=\left[\Delta x \sum_{m=-\infty}^{\infty}\left|v_{m}\right|^{2}\right]^{\frac{1}{2}}
$$

And for a function f on the real time

$$
\text { norm } f=\|f\|=\left[\int_{-\infty}^{+\infty}|f(x)|^{2} d x\right]^{\frac{1}{2}}
$$

Definition: a finite one-step difference scheme (43) for a first order P.D.E. is stable if there exist number $k_{0}>0$ and $h_{0}>0$ such that for any for any $T>0$ there exist a constant C_{T} such that

$$
\left\|v^{n}\right\| \leq C_{T}\left\|v^{0}\right\| \quad, \text { For } \quad 0<n k \leq T, 0<h \leq h_{0}, 0<k \leq k_{0}
$$

Definition: The initial value problem for the first order P.D.E. is wellposed, if for any time $T \geq 0$, there exist C_{T} such that any solution $u(x, t)$ satisfies

$$
\|u(x, t)\| \leq C_{T}\|u(x, 0)\| \text { for } 0 \leq t \leq T
$$

Definition: A one-step finite difference scheme approximating a P.D.E. is
convergent if for any solution to the P.D.E., $u(x, t)$ is approach to numerical solution $u(n h, m k)$ as $h, k \rightarrow 0$
Note: A consistent finite difference scheme for a P.D.E. for which the initial value problem well posed is convergent if it is stable.
Definition: Fourier transformation and inversion formula for u defined in region \mathfrak{R} given as;

$$
\begin{aligned}
& \hat{u}(p)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i p x} u(x) d x \\
& u(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i p x} \hat{u}(p) d p
\end{aligned}
$$

For a grid function $v=\left(\ldots \ldots . ., v_{-2}, v_{-1}, v_{0}, v_{1}, v_{2}, \ldots \ldots \ldots \ldots\right)$ with grid spacing Δx

$$
\begin{aligned}
& \hat{u}(\xi)=\frac{1}{\sqrt{2 \pi}} \sum_{-\infty}^{\infty} e^{-i m h \xi} u_{m} \Delta x \\
& u_{m}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi / h}^{\pi / h} e^{-i p x} \hat{u}(\xi) d \xi
\end{aligned}
$$

From the Parseval condition

$$
\begin{aligned}
& \|u(x)\|=\|\hat{u}(p)\|, \quad \text { where }\|\hat{u}(\xi)\|^{2}=\int_{-\pi / h}^{\pi / h}|\hat{l}(\xi)|^{2} d \xi \\
& \|\hat{u}(\xi)\|=\left\|u_{m}\right\|
\end{aligned}
$$

Convergent:

The system of algebraic equations that is resulting from recurrence relation of finite difference schemes, written as

$$
\begin{equation*}
\vec{u}^{n+1}=M \bar{u}^{n}+\bar{c} \tag{45}
\end{equation*}
$$

Let \hat{u}^{n} be the solution of the finite difference system (45) with a perturbed initial conditions;

$$
\begin{equation*}
\hat{\bar{u}}^{n+1}=M \hat{\bar{u}}^{n}+\vec{c} \tag{46}
\end{equation*}
$$

Let

$$
\varepsilon=\vec{u}^{n}-\hat{\vec{u}}^{n}
$$

From (45) and(46), we have

$$
\begin{align*}
\vec{u}^{(n+1)}-\hat{\bar{u}}^{(n+1)}=M\left(\vec{u}^{(n)}-\hat{\bar{u}}^{(n)}\right) \\
\Rightarrow \vec{\varepsilon}^{(n+1)}=M \vec{\varepsilon}^{(n)} \Rightarrow \overrightarrow{\bar{\varepsilon}}^{(n)}=M^{(n)} \vec{\varepsilon}^{(0)} \tag{47}
\end{align*}
$$

If $M^{n} \rightarrow 0$, as $n \rightarrow \infty$, then $\bar{\varepsilon}^{(n)} \rightarrow 0$ (i.e. the system is convergent).
Definition: if $M^{n} \rightarrow 0$, as $n \rightarrow \infty$, then M is convergent.
Definition: Spectrum radius $\rho(M)=\max _{i}\left|\lambda_{i}\right|$, where λ_{i} are the eigenvalues of the matrix M.
Theorem: If M is the matrix coefficients and $\rho(M)$ is spectrum radius, then $\|M\| \geq \rho(M)$.
Proof: Suppose $\rho(M)=\max _{i}\left|\lambda_{i}\right|=\lambda_{1}$, then

$$
M \vec{u}=\lambda_{1} \stackrel{\rightharpoonup}{u} \Rightarrow\|M \bar{u}\|=\left\|\lambda_{1} \vec{u}\right\|, \quad\|\vec{u}\| \neq 0
$$

$$
\begin{equation*}
\|M \vec{u}\|=\mid \lambda_{1}\|\vec{u}\| \tag{48}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\|M \bar{u}\| \leq\|M\| \vec{u} \| \tag{49}
\end{equation*}
$$

From equations (48)\&(49), we get:

$$
\|M\| \vec{u}\left\|\geq \mid \lambda_{1}\right\| \vec{u} \|
$$

Since $\|\vec{u}\| \neq 0 \Rightarrow\|\vec{u}\|>0$, this implies that

$$
\|M\| \geq\left|\lambda_{1}\right|=\rho(M)
$$

Theorem: If $\|M\|<1$, then M is convergent.

Proof:

$$
\begin{aligned}
& \left\|M^{(n)}\right\|=\left\|M M^{(n-1)}\right\| \\
& \left\|M M^{(n-1)}\right\| \leq\|M\|^{(n)} \quad, \quad \text { Prove that! }
\end{aligned}
$$

From these relations, we get

$$
\left\|M^{(n)}\right\| \leq\|M\|^{(n)}
$$

If $\|M\|<1$, then $\|M\|^{(n)} \rightarrow 0$, as $n \rightarrow \infty$, this implies that
$M \rightarrow 0$, as $n \rightarrow \infty$, from the previous definition, we have M is convergent

Corollary: If $\|M\|<1$ for any norm then the iterative process for $\hat{\bar{u}}^{n+1}=M \hat{\bar{u}}^{n}$ will converge for every $u^{(0)}$.
Note: it is possible that for some norm that $\|M\|>1$, but M is still convergent.

Theorem: If $\rho(M) \geq 1$, then M is not convergent.
Proof:
Suppose $\rho(M)=\max _{i}\left|\lambda_{i}\right|=\lambda_{1}$, then

$$
M \vec{u}=\lambda_{1} \stackrel{\rightharpoonup}{u}, \text { where } \lambda_{1} \geq 0, \vec{u} \neq 0
$$

$\operatorname{From}\left(47^{* * *}\right)$, we have

$$
\bar{\varepsilon}^{(n)}=M^{(n)} \bar{\varepsilon}^{(0)}
$$

Let $\vec{u}=\vec{\varepsilon}^{(0)}$, then

$$
\begin{aligned}
& \vec{\varepsilon}^{(1)}=M \vec{\varepsilon}^{(0)}=M \vec{u}=\lambda_{1} \vec{u} \\
& \vec{\varepsilon}^{(n)}=M^{(n)} \vec{u}=\lambda_{1}^{(n)} \vec{u}
\end{aligned}
$$

Since $\lambda_{1} \geq 0, \vec{u} \neq 0$, then
$\left\|\vec{\varepsilon}^{(n)}\right\|=\left|\lambda_{1}\right|^{(n)}\|\vec{u}\|$, dose not approach to zero, as $n \rightarrow \infty$, thus M is not convergent

Theorem: Necessary and sufficient condition for $M \neq 0$ be convergent iff $\rho(M)<1$.

