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Stability, Convergence and consistency: 

       After presented, how to approximate the derivatives that including in 

P.D.E. to generate the finite difference schemes for its numerical 

solution? Should be discussing the follow; 

 Verity that these schemes are good approximation to the P.D.E. 

     ( consistent). 

 Verify that the schemes are stable or no. 

 Show that the numerical solution converges to the solution of 

P.D.E. 

Let us to define  

                                    bUF kh )(,
        ………………..(43) 

  Is a finite scheme and, 

                                   buF                 ………………..(45) 

is a partial differential equation. Now we need to light up some 

definition related to the property of finite difference schemes, as 

follows; 

Definition: we say that a finite difference scheme (43) is consistent with 

                   P.D.E.(45) of order ),( hk  , if for any smooth function  

                                            ),(,
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                To verify consistency expand u  in Taylor series and make sure  

                equation (46) holds. 
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(1) show that the finite difference equation given as 
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(2) Show that difference equation and P.D.E. are consistent 

with the truncation error  
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Solution: using forward finite difference approximation (15) for the first  

                order time derivative, and central finite difference 

               approximation(18)for the second order spatial derivative, 

               finite difference  equation so obtained is 
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Rearrangement this equation, we have 
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If we put 
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   and using the definition of the central difference 

operator, then the finit difference equation becomes          
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Expand each term in equation(44) ,we obtain  
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Rearrangement this equation to obtain 
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This equation of order ),( 2hkO . 

Exercise7: Approximation P.D.E. in above example by implicit finite  

                 difference method ,then find its order of error 

 

Definition: For a function ...),.........,,,,,(......... 21012 vvvvvv  on the grid  

                  with step size x : 
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                 And for a function f on the real time  
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Definition: a finite one-step difference scheme (43) for a first order  

                  P.D.E. is stable if there exist  number 00 00  handk  such  

                  that for any for any 0T there exist a constant  TC  such that  

                               0vCv T

n        , For     00 0,0,0 kkhhTnk   

Definition: The initial value problem for the first order P.D.E. is well- 

                   posed, if for any time 0T , there exist TC such that any 

                   solution ),( txu satisfies 

                                            )0,(),( xuCtxu T  for Tt 0  

Definition: A one-step finite difference scheme approximating a P.D.E. is  
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                  convergent if for any  solution to the P.D.E., ),( txu is approach  

                  to numerical solution ),( mknhu  as 0, kh  

Note:    A consistent finite difference scheme for a P.D.E. for which the 

             initial value problem well posed is convergent if it is stable.  

Definition: Fourier transformation and inversion formula for u  defined  

                   in region given as; 
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  For a grid function ...),.........,,,,,(......... 21012 vvvvvv  with grid spacing x  
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          From the Parseval condition 
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Convergent:  

           The system of algebraic equations that is resulting from recurrence 

relation of finite difference schemes, written as 

                                             cuMu nn 
1     ……………….. (45) 

Let nû  be the solution of the finite difference system (45) with a 

perturbed initial conditions; 

                                           cuMu nn 
 ˆˆ 1       ……………….. (46) 

           Let                 nn uu
̂

  

From (45) and(46) ,we have 

                         )ˆ(ˆ )()()1()1( nnnn uuMuu
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 nnnn MM     …………………..(47) 

      If 0nM , as n ,then 0)( n


  (i.e. the system is convergent). 

 

Definition: if 0nM , as n ,then M  is convergent. 

 

Definition: Spectrum radius i
i

M  max)(  , where i are the eigenvalues  

                  of the  matrix M . 

Theorem: If M is the matrix coefficients and )(M is spectrum radius, 

                  then )(MM  . 

    Proof :   Suppose 1max)(   i
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Also,                          uMuM


                    …………………….(49 ) 

From equations (48)&(49), we get:  
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 , this implies that   

                                )(1 MM                                                                      

Theorem:  If 1M , then M  is convergent. 

       

    Proof:       

                   )1()(  nn MMM  

                    
)()1( nn MMM     ,             Prove that! 

From these relations, we get  
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0M , as n , from the previous definition ,we have 

                   M  is convergent  

 

Corollary:  If  1M   for any norm then the iterative process for 

                   nn uMu ˆˆ 1 
  will converge for every )0(u . 

Note: it is possible that for some norm that 1M , but M  is still 

convergent. 

 

Theorem: If 1)( M , then  M  is not convergent. 

 Proof: 
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From(47***), we have  

                            )0()()( 
 nn M  

Let )0(


u , then  

                      uuMM


1

)0()1(     

                 uuM nnn  )(

1

)()(     

Since 0,01  u


 , then  

          u
nn  )(

1

)(    ,dose not approach to zero, as n , thus  

              M  is not convergent 

 

Theorem: Necessary and sufficient condition for 0M  be convergent iff 
1)( M . 


